Using Discriminants to Find the Number of Roots of a Quadratic Curve

In general, we could apply the formulax=\frac{-b\pm\sqrt{b^2-4ac\ }}{2a}. to work out the solutions of a quadratic function ax2+bx+c=0. 

The b2-4ac part is called the discriminant and the value of a discriminant could allow us to know the number of real roots that a quadratic function has. In other words, how many times does a quadratic curve cross the horizontal x axis in a graph?<o:p></o:p>

If b2-4ac=0, then a quadratic function has one real root and the graph of the function would be a curve just touch but not cross the x axis. In other words, the x axis is a tangent at the touching point and the touching point is also the minimum or maximum point of the function.<o:p></o:p>

If b2-4ac>0, then there are two real roots for the quadratic function and the corresponding graph would be a quadratic curve crosses over x axis twice.<o:p></o:p>

If b2-4ac<0, then there is no real roots for the quadratic function and a quadratic curve does not intersect or touch the horizontal axis at all in the graph. We could say that all points lying on this particular curve are either below the x axis or above the x axis.<o:p></o:p>

AL
Answered by Angela L. Maths tutor

6325 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many solutions are there of the equation a+b+c=12, where a,b,c are non-negative integers?


Integrate sec^2(x)tan(X)dx


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning