Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .

We start by letting yp = ax+b, as suggested, and finding the derivative yp' = a. Substituing into ODE  (by way of matching coefficients) gives a pair of simulataneous (algebraic) equations:

(1) 2a=5b

(2) -5a=10

which can be solved to give (a,b)=(-2,-4/5). Then yp=-2x-4/5.

We now find the characteristic solution to the homogeneous ODE, 2y'+5y=0. By rearranging and integrating we find that 

2ln|y| = 5x+C

which we rearrange to find yc = Aexp(5x/2). Then the general solution, given by y(gs)=yc+yp, takes the form

y=Aexp(5x/2)-2x-4/5,

and we are done.

BR
Answered by Ben R. Maths tutor

4654 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).


How do I invert a 2x2 square matrix?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning