Find the values of the constants a and b for which ax + b is a particular integral of the differential equation 2y' + 5y = 10x. Hence find the general solution of 2y' + 5y = 10x .

We start by letting yp = ax+b, as suggested, and finding the derivative yp' = a. Substituing into ODE  (by way of matching coefficients) gives a pair of simulataneous (algebraic) equations:

(1) 2a=5b

(2) -5a=10

which can be solved to give (a,b)=(-2,-4/5). Then yp=-2x-4/5.

We now find the characteristic solution to the homogeneous ODE, 2y'+5y=0. By rearranging and integrating we find that 

2ln|y| = 5x+C

which we rearrange to find yc = Aexp(5x/2). Then the general solution, given by y(gs)=yc+yp, takes the form

y=Aexp(5x/2)-2x-4/5,

and we are done.

BR
Answered by Ben R. Maths tutor

4814 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


In a triangle ABC, side AB=10 cm, side AC=5cm and the angle BAC=θ, measured in degrees. The area of triangle ABC is 15cm(sq). Find 2 possible values for cosθ and the exact length of BC, given that it is the longest side of the triangle.


find the derivative of f(x) = x^3 + 2x^2 - 5x - 6. Find all stationary points of the function.


Of the following 4 equations, 3 of them represent parallel lines. Which is the odd one out?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning