Find the first three non-zero terms of the Taylor series for f(x) = tan(x).

We have that the Taylor series of a function infinitely differentiable at a x = a is given by the expansion: f(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)2/2! + f'''(a)(x - a)3/3! + f(4)(a)(x - a)4​​​​​​​/4! +... Thus we differentiate f(x) 5 times and evaluate at zero (as in this case a = 0) in order to obtain all our coefficients. f(x) = tan(x), f(0) = tan(0) = 0 f'(x) = sec2(x) = 1 + tan2(x) = 1 + f(x)2, thus f'(0) = 1 + f(0)2 = 1 [by writing f'(x) in terms of f(x), we can skip differentiating reciprocal trig functions and simply leave the derivates in terms of f(x) and its derivatives of lower order] f''(x) = 2f'(x)f(x), f''(0) = 0 f'''(x) = 2(f''(x)f(x) + f'(x)2), f'''(0) = 2 f(4)(x) = 2(f'''(x)f(x) + 3f''(x)f'(x)), f(4)(0) = 0 f(5)(x) = 2(f(4)(x)f(x) + 4f'''(x)f'(x) + 3f''(x)2), f(5)(0) = 16 Thus the first three non-zero terms of the Taylor series for tan(x) are: x + 2x3/3! + 16x5/5! = x + x3/3 + 2x5/15

AS
Answered by Ashwin S. Further Mathematics tutor

12206 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning