Find the first three non-zero terms of the Taylor series for f(x) = tan(x).

We have that the Taylor series of a function infinitely differentiable at a x = a is given by the expansion: f(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)2/2! + f'''(a)(x - a)3/3! + f(4)(a)(x - a)4​​​​​​​/4! +... Thus we differentiate f(x) 5 times and evaluate at zero (as in this case a = 0) in order to obtain all our coefficients. f(x) = tan(x), f(0) = tan(0) = 0 f'(x) = sec2(x) = 1 + tan2(x) = 1 + f(x)2, thus f'(0) = 1 + f(0)2 = 1 [by writing f'(x) in terms of f(x), we can skip differentiating reciprocal trig functions and simply leave the derivates in terms of f(x) and its derivatives of lower order] f''(x) = 2f'(x)f(x), f''(0) = 0 f'''(x) = 2(f''(x)f(x) + f'(x)2), f'''(0) = 2 f(4)(x) = 2(f'''(x)f(x) + 3f''(x)f'(x)), f(4)(0) = 0 f(5)(x) = 2(f(4)(x)f(x) + 4f'''(x)f'(x) + 3f''(x)2), f(5)(0) = 16 Thus the first three non-zero terms of the Taylor series for tan(x) are: x + 2x3/3! + 16x5/5! = x + x3/3 + 2x5/15

Related Further Mathematics A Level answers

All answers ▸

Show that the square of any odd integer is of the form (8k+1)


Find the modulus-argument form of the complex number z=(5√ 3 - 5i)


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


Solve this equation: x^2 + 2x + 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences