What is the total energy of a spaceship of mass m, orbiting a planet of mass M in a circular orbit with radius r? The ship and the planet are taken to be an isolated system.

 In the non-inertial frame of reference of the spaceship, a centrifugal and a gravitational force acts on the spaceship. If its mass is m and the positive direction is radially outwards, we have:

F= -GmM/r2 -  gravitational force(G is the gravitational constant)

F= mv2/r - centrifugal force(v is the spaceship's velocity)

the spaceship's orbit is of fixed radius, so it doesn't move radially, thus there is no radial acceleration, when all forces are taken into account. From Newton's second law we have:

F+ F= ma = 0 - here a is the acceleration of the ship

=> mv2/r - GmM/r= 0

v= GM/r      (1)

The ship has kinetic and potential energies, which are given by the equations:

E= mv2/2 = GmM/2r - kinetic energy with the substitution from equation (1)

E= -GmM/r - potential energy, which is only the gravitational potential energy, since there are no other force fields

The total energy is then:

E = E+ E= GmM/2r -  GmM/r = -GmM/2r

Answered by Ivan D. Physics tutor

1965 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Define the resistivity of a metal wire


What is Newtons third law of motion?


Calculate the length of a 120m (as measured by the astronaut) spaceship travelling at 0.85c as measured by a stationary observer


A bullet is fired horizontally from a gun at a height of 1.5m at 280m/s. Calculate the time taken for it to hit the ground. A second bullet is fired from an adjacent gun at 370m/s. Calculate the distance it travel before the first bullet hits the ground.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences