What is the total energy of a spaceship of mass m, orbiting a planet of mass M in a circular orbit with radius r? The ship and the planet are taken to be an isolated system.

 In the non-inertial frame of reference of the spaceship, a centrifugal and a gravitational force acts on the spaceship. If its mass is m and the positive direction is radially outwards, we have:

F= -GmM/r2 -  gravitational force(G is the gravitational constant)

F= mv2/r - centrifugal force(v is the spaceship's velocity)

the spaceship's orbit is of fixed radius, so it doesn't move radially, thus there is no radial acceleration, when all forces are taken into account. From Newton's second law we have:

F+ F= ma = 0 - here a is the acceleration of the ship

=> mv2/r - GmM/r= 0

v= GM/r      (1)

The ship has kinetic and potential energies, which are given by the equations:

E= mv2/2 = GmM/2r - kinetic energy with the substitution from equation (1)

E= -GmM/r - potential energy, which is only the gravitational potential energy, since there are no other force fields

The total energy is then:

E = E+ E= GmM/2r -  GmM/r = -GmM/2r

Answered by Ivan D. Physics tutor

2123 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An engineering student found that the Youngs modulus of an alloy was 2.8 x 10^11 Pa. The 1.5m wire of the allow increased in length by 0.24% during an experiment. Calculate the stress on the wire.


Given a projectile is launched, from rest, at an angle θ and travels at a velocity V, what is the range and path of motion of the projectile? (Ignore air resistance.)


What is the escape velocity of an object leaving a planet mass M, radius R?


Calculate the root mean squared speed for 16g of oxygen gas at 50(deg Celsius) and explain why we use this instead of the average velocity of all the particles.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences