Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)

Using: Tan(x) = Sin(x)/Cos(x)

Using: Cos(x) = sqrt(1-Sin2(x))

Cos(A) = sqrt(1-Sin2(A)) = sqrt(1-1/3) = sqrt(2)/sqrt(3)

Therefore: Tan(A) = Sin(A)/Cos(A) = (1/sqrt(3))/(sqrt(2)/sqrt(3)) = 1/sqrt(2)

Answered by Sameh H. Maths tutor

3480 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.


How do you differentiate simple algebra?


What are the roots of y=x^2+5x+6 ?


Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences