Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)

Using: Tan(x) = Sin(x)/Cos(x)

Using: Cos(x) = sqrt(1-Sin2(x))

Cos(A) = sqrt(1-Sin2(A)) = sqrt(1-1/3) = sqrt(2)/sqrt(3)

Therefore: Tan(A) = Sin(A)/Cos(A) = (1/sqrt(3))/(sqrt(2)/sqrt(3)) = 1/sqrt(2)

Answered by Sameh H. Maths tutor

3724 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find gradient of functions


Why is the definite integral between negative limits of a function with positive values negative even though the area bound by the x-axis is positive? for example the integral of y=x^2 between x=-2 and x=-1


Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


How does the product rule for differentiation work


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences