Derive Law of Cosines using Pythagorean Theorem

Consider the triangle ABC. Denote h the altitude through B and D the point where h intersects the (extended) base AC
Cosine function for triangle ADB.

cos α= x/c  =>  x=c*cos α
 

Pythagorean theorem for triangle ADB
x2+h2=c2*x2+h2=c2
h2=c2−x2*h2=c2−x2

Pythagorean theorem for triangle CDB
(b−x)2+h2=a2*(b−x)2+h2=a2

Substitute h2 = c2 - x2
(b−x)2+(c2−x2)=a2(b−x)2+(c2−x2)=a2
(b2−2bx+x2)+(c2−x2)=a2(b2−2bx+x2)+(c2−x2)=a2
b2−2
bx+c2=a2b2−2bx+c2=a2

Substitute x = ccos α
b2−2b
(ccosα)+c2=a2b2−2b(c*cos α)+c2=a2

Rearrange to get Law of Cosines

a2=b2+c2−2bc*cos α

Answered by Jan M. Maths tutor

2761 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


Use integration by parts to find ∫ (x^2)sin(x) dx. (A good example of having to use the by parts formula twice.)


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


Find the stationary points of y= 5x^2 + 2x + 7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences