If y = exp(x^2), find dy/dx

Recall that the derivative of exp(x) is exp(x), but notice this question is slightly more complex due to the x^2 term. This is example of differentiationg composite functions, and so the chain rule is required. To begin, we'll set u = x^2, and then compute du/dx = 2x. Furthermore, we observe that y = exp(u) and dy/du = exp(u). Then, by the chain rule, we have dy/dx = dy/du * du/dx = exp(u) * 2x = exp(x^2) * 2x.

Answered by Stuart B. Maths tutor

7521 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to transform graphs of functions?


what does 'differentiation' mean?


If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?


Differentiate xcos(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences