Solve the two equations: Equation 1: 2a - 5b = 11 Equation 2: 3a + 2b = 7

Firstly, you should aim to eliminate one of the unknown values. As b is positive and negative in each equation, this would be a good value to eliminate. Both equations would have to be multiplied to cancel out one of the values. For example, if equation 1 is multiplied by 2 and eqution 2 is multiplied by 5 you get:

Equation 1: 4a-10b= 22         Equation 2: 15a+ 10b= 35

Then add the two new equations together to cancel out b and simplify, which leaves you with:

19a= 57 therefore   a= 3

Then substitute a with 3 in equation 1 or 2 to find out the value of b. For example, if substituted into equation 1 you get:

(2 x 3) -5b=11   therefore  b=-1 

Answered by Ikraan H. Maths tutor

5426 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations x+y=3 and-x+5y=-15.


Alex wants to buy a new phone. It costs £280. Alex’s weekly wage is £420. He saves 15% of his wage each week. How many weeks does it take Alex to save enough money to buy the phone?


Solve the simultaneous equation- 2x+8y=10 and 3x+2y=5


Solve the simultaneous equations: 3x+2y = 11, 2x-5y=20


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences