Differentiate y=(4x - 5)^5 by using the chain rule.

Notation: I use the ^ in the title question to indicated 'to the power of' and I use an asterisk * (or star) to indicate 'multiplied by' in the answer, to avoid confusion with the x term! 

Step 1) let u = 4x - 5      therefore y = u5

Step 2) du/dx = 4           dy/du = 5u4

Step 3) (the chain rule!)  dy/dx = dy/du * du/dx

so dy/dx = 5u4 * 4

     dy/dx = 20u4 

     dy/dx = 20(4x - 5)4 as we substitute for the u term to complete our answer! 

JE
Answered by Joseph E. Maths tutor

13067 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area bounded by the curve x^2-2x+3 between the limits x=0 and x=1 and the horizontal axis.


Rationalise the complex fraction: (8 + 6i)/(6 - 2i)


Differentiate "sin(2x)"


You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning