Integrate sin(x)cos(x)^2 from 0 to π/2

Use substitution u=cos(x) resulting in du=-sin(x)dx: ∫0π/2sin(x)cos(x)^2dx = ∫0π/2-u^2du = [-1/3 u^3]x=0x=π/2 = [-1/3 cos(x)^3]0π/2 = (-1/3 cos(π/2)^3) - (-1/3 cos(0)^3) = (-1/3 0^3 ) - (-1/3 1^3) = 0 + 1/3 = 1/3

BS
Answered by Benedek S. Maths tutor

8969 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find the gradient of the tangent to the curve y=x^2 at the point (4,16)


Differentiate 3x^2 + 4x - 7


Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5


Given that y = 5x(3) + 7x + 3, find A) dy/dx B) d2y/dx2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning