Solve the following simultaneous equation: 1) 2x=y-5, 2) 2y^2=4x^2+4x-15

The most instinctual method one would go by is to rearrange the terms so that one side of the equation will be equal to either x,y, or zero. In this case to avoid fractions it may be best to rearrange the equation in terms of y, hence y=2x+5- the second equation does not need to be rearranged. Examining Eq2, we see that it is possible to factorise is hence getting 2y^2=(2x-3)(2x+5). Substituting Eq 1into Eq2, we get: 2(2x+5)^2=(2x-3)(2x+5). Cancellation of (2x+5) on both sides is possible here, so we are left with: 2(2x+5)=2x-3, which when rearranged to make 'x' the subject gives x= -13/2.

Answered by King-Ting L. Maths tutor

2998 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of the line L1 is y=3x–2. The equation of the line L2 is 3y–9x+5=0. Show that these two lines are parallel.


Find the equation of the line perpendicular to y=2x-1 that passes through (2,0)


How is trigonometry used on non-right angled triangles?


Solve the quadratic equation x^2 + x - 6 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences