find dy/dx for the equation y = 6x ^(1/2)+x+3

Here you are being asked to differentiate. When differentiating, you times the value of x by its power and then subtract 1 from the power. So for this question you times 6x^(1/2) by 1/2 and then subtract 1 from its power, this gives you 3x^(-1/2). x is the same as x^1 so by following the same rule, this leaves you with x^0. Any number to the power of 0 is 1, therefore, x goes to 1. And finally the 3, it has no x term and so, therefore, is 0. Put all together the answer is dy/dx=3x^(-1/2)+1

Answered by George B. Maths tutor

4630 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A general function f(x) has the property f(-x)=-f(x). State a trigonometric function with this property and explain using the Maclaurin series expansion for this function why this property holds. Write down the integral in the limits -q to q of f(x) wrt x


integrate x^2(2x - 1)


Solve the differential equation: (dy/dx) = 6xy^2


Find ∫(8x^3 + 4) dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences