Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.

First of all we are asked to differentiate the function. This can be easily done by multiplying the coefficient of x by its exponent, and then decreasing the exponent by one. Therefore, dy/dx=3x^2+4x We are then asked to find the two points on the curve where the gradient is 4; this can be solved by setting the derivative we just calculated to equal four ( since the derivative function gives us the value of the gradient at each x-coordinate). Which gives us: 3x^2+4x=4 = 3x^2+4x-4=0 we can solve this quadratic by using the quadratic formula, which gives us the solutions: x=-2 and x=2/3

IH
Answered by Imran H. Maths tutor

15815 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x that satisfy the following inequality 3x – 7 > 3 – x


Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).


Find the exact gradient of the curve y = ln(1-cos 2x) at the point with x-coordinate π/6.


How can I find the normal to a curve at a given point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning