Find the derivative of f(x)=x^3 sin(x)

Find the derivative of f(x)=xsin(x).

To do this calculation we need to use the product rule of differentiation: if f(x)=u(x)v(x), then the derivative is f'(x)=u'(x)v(x)+u(x)v'(x). In our case, u(x)=xand v(x)=sin(x).

First we calculate the derivatives of u and v in the usual way:

u'(x)=3x2
v'(x)=cos(x)

Then we put together our answer using the product rule:

f'(x)= u'(x)v(x)+u(x)v'(x)
     = 3xsin(x) + xcos(x)
     = x2(3 sin(x) + x cos(x))

In the final step we simplified our answer by identifying the common factor x2. This step is not essential, but it is generally a good idea to simplify your answer as far as possible.

Answered by Mairi M. Maths tutor

21729 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I multiply two matrices together?


How to do the product rule for differentiation


Differentiate the equation y^2 + y = x^3 + 2x


Integrate ⌠( xcos^2(x))dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences