What happens to the pressure inside a gas-filled ball when the temperature is increased? Explain your answer, stating the assumption made.

From definition of pressure have P=F/A (in reality for a ball we are talking about infinitesimal areas, but the general definition is sufficient at this level). Assume that the area of the surface under consideration stays fixed. This is an important point about physics in general as we must be aware of what assumptions are being made and if they are appropriate. This effectively means the shape of the ball stays fixed and so we can allow proportionality between P and F. By Newton II Law we know F=dp/dt and so combining equations have P=(1/A)dp/dt. Stating conservation of momentum in a collision and the assumption of infinite wall mass, and the kinetic definition of temperature (proportional to average particle kinetic energy sufficient). Hence an increase in temperature leads to an increased rms particle velocity, leading to an increased average particle momentum. Hence the overall pressure is increased as we observe a higher collision rate and a higher change in momentum per collision. 

Answered by James H. Physics tutor

1614 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the force on a moving charged particle in a magnetic field, and why is no work done by this force when it accelerates the particle?


A piece of card is released from rest at a height of 0.5m above a light gate. It falls freely and a computer measures the velocity as it passes through the light gate to be 3.10m/s. What is the acceleration due to gravity measured by this experiment?


What is the photoelectric effect and how does it provide evidence for the quantisation of electromagnetic radiation?


Can you explain the photoelectric effect?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences