Why is the argument of a+bi equal to arctan(b/a)?

Think about the point a+bi on the complex plane. Specifically, a is how far along the x (real) axis, and b is how far up the y (imaginary) axis the point is. If you draw a line connecting the origin and the point a+bi then notice that you've constructed a triangle with sides a, b, and sqrt(a^2+b^2). Recall that tan of an angle = opp/adj, applying this to the triangle gives that the angle between the x-axis and the line from the origin is equal to arctan(b/a). This is exactly what the argument of a complex number is, the angle between the x-axis and the line connecting the number and the origin.

MS
Answered by Martin S. Further Mathematics tutor

14138 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t


Integrate (4x+3)^1/2 with respect to x.


Show, using the focus-directrix property for an ellipse, that PS +PS'=2a where P is a point on the ellipse and S and S' are the two foci.


Find the square roots of 2 + isqrt(5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning