Why is the argument of a+bi equal to arctan(b/a)?

Think about the point a+bi on the complex plane. Specifically, a is how far along the x (real) axis, and b is how far up the y (imaginary) axis the point is. If you draw a line connecting the origin and the point a+bi then notice that you've constructed a triangle with sides a, b, and sqrt(a^2+b^2). Recall that tan of an angle = opp/adj, applying this to the triangle gives that the angle between the x-axis and the line from the origin is equal to arctan(b/a). This is exactly what the argument of a complex number is, the angle between the x-axis and the line connecting the number and the origin.

MS
Answered by Martin S. Further Mathematics tutor

14206 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


Given M = [[-2,6],[1,3]], find P and D such that M = PDP^(-1) where D is a diagonal matrix


Find, without using a calculator, integral of 1/sqrt(15+2x-x^2) dx, between 3 and 5, giving your answer as a multiple of pi


What is the modulus of 3+4i?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning