Why is the argument of a+bi equal to arctan(b/a)?

Think about the point a+bi on the complex plane. Specifically, a is how far along the x (real) axis, and b is how far up the y (imaginary) axis the point is. If you draw a line connecting the origin and the point a+bi then notice that you've constructed a triangle with sides a, b, and sqrt(a^2+b^2). Recall that tan of an angle = opp/adj, applying this to the triangle gives that the angle between the x-axis and the line from the origin is equal to arctan(b/a). This is exactly what the argument of a complex number is, the angle between the x-axis and the line connecting the number and the origin.

MS
Answered by Martin S. Further Mathematics tutor

13175 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


Prove that "6^n + 9" is divisible by 5 for all natural numbers.


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning