Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.

First let a = b = x such that:          

          cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

becomes:

          cos(x + x) = cos(x)cos(x) - sin(x)sin(x)

Leading to:

          cos(2x) = cos2(x) - sin2(x)

Using the fact that sin2(y) + cos2(y) = 1 or rearranged sin2(y) = 1 - cos2(y):

          cos(2x) = cos2(x) - (1 - cos2(y)) = 2cos2(x) - 1, as required.

Another suitable approach may involve the Maclaurin series of cos(2x) and cos2(x) to arrive at the required relation, although this is more involved.

Answered by Benjamin H. Maths tutor

2866 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to derive escape velocity


Find the surface area of a hand held fan (modeled with negligible depth) with radius 8 cm and a 60 degree angle at the centre


The gradient of a curve is given by dy/dx = 6sqrt(x) + 2. The curve passes through the point (16, 38). Find the equation of the curve.


Solve the pair of simultaneous equations; (1) y + 4x + 1 = 0, (2) y^2 + 5x^2 + 2x = 0 .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences