Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.

First let a = b = x such that:          

          cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

becomes:

          cos(x + x) = cos(x)cos(x) - sin(x)sin(x)

Leading to:

          cos(2x) = cos2(x) - sin2(x)

Using the fact that sin2(y) + cos2(y) = 1 or rearranged sin2(y) = 1 - cos2(y):

          cos(2x) = cos2(x) - (1 - cos2(y)) = 2cos2(x) - 1, as required.

Another suitable approach may involve the Maclaurin series of cos(2x) and cos2(x) to arrive at the required relation, although this is more involved.

Answered by Benjamin H. Maths tutor

3333 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I differentiate y = 3xy + 2x^2 + x^2y^2 ?


f(x) = (sin(x))^3. What is f'(x)


Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


Solve the Equation: 2ln(x)−ln (7x)=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences