Where do the graphs of y=3x-2 and y=x^2+4x-8 meet?

In order to find the points where these functions meet, we can equate them to get 3x-2 = x^2+4x-8 .

Subtraction (3x-2) from both sides, we get x^2+x-6 =0 which we can factorise to get (x+3)(x-2)=0

Therefore x=-3 or x=2 , and we can then get the values of y from this.

So the final answers are (-3, -11) and (2,4)

Answered by Helen S. Maths tutor

2965 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points P (2,3.6) and Q(2.2,2.4) lie on the curve y=f(x) . Use P and Q to estimate the gradient of the curve at the point where x=2 .


Express as a single logarithm 2 loga 6 loga 3 [2 marks]


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


For a given function F(x), what does the graph of the function F(x+2) look like in comparrison to F(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences