Where do the graphs of y=3x-2 and y=x^2+4x-8 meet?

In order to find the points where these functions meet, we can equate them to get 3x-2 = x^2+4x-8 .

Subtraction (3x-2) from both sides, we get x^2+x-6 =0 which we can factorise to get (x+3)(x-2)=0

Therefore x=-3 or x=2 , and we can then get the values of y from this.

So the final answers are (-3, -11) and (2,4)

Answered by Helen S. Maths tutor

3235 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


How do I solve this inequality: x^2>2x ?


For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences