Calculate the integral of (3x+3)/(2x^2+3x) between the limits 39 and 3

The first step is to split the fraction into 2 separate fractions using partial fractions techniques. Write 3x+3/2x^2+3x as A/x + B/2x+3 and solve to get A = 1, B = 1. We have now converted 3x+3/2x^2+3x into two much simpler fractions, 1/x + 1/2x+3

The next step is to integrate and we can recognise that both fractions are of the form, diferential of the denominator (or fraction of it), over the denominator. This means that by recognition we can integrate to get 0.5ln(2x+3) + lnx. Substituting values in and using natural logarithm laws we can come to the conclusion that the answer is ln39

Answered by Oliver W. Maths tutor

2746 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You are given the equation y=x^2. Determine whether or not the equation has any maximums or minimums and identify them (whether they are maximums or minimums).


Find values of x for which 2x^2 < 5x + 12


The polynomial p(x) is given by p(x)=x^3 - 5x^2 - 8x + 48. Given (x+3) is a factor of p(x), express p(x) as a product of 3 linear factors.


How Do I Integrate cos(x) and sin(x) with higher powers?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences