To find potential points of intersection between the line and the circle, we need to solve the equations simultaneously. So, we substitute y = x - 7 into the equation of the circle: (x + 2)2 + y2 = 33 (x + 2)2 + (x - 7)2 = 33 x2 + 4x + 4 + x2 - 14x + 49 = 33 (expand the brackets) 2x2 - 10x + 20 = 0 (collect like terms) x2 - 5x + 10 = 0 (divide each term by 2) Now, the discriminant b2 - 4ac = (-5)2 - 4 * 1 *10 = 25 - 40 = -15. As b2 - 4ac < 0, there is no solution to the quadratic equation. So, the line does not meet the circle.