Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.

To find potential points of intersection between the line and the circle, we need to solve the equations simultaneously. So, we substitute y = x - 7 into the equation of the circle: (x + 2)2 + y2 = 33 (x + 2)2 + (x - 7)2 = 33 x2 + 4x + 4 + x2 - 14x + 49 = 33 (expand the brackets) 2x2 - 10x + 20 = 0 (collect like terms) x2 - 5x + 10 = 0 (divide each term by 2) Now, the discriminant b- 4ac = (-5)- 4 * 1 *10 = 25 - 40 = -15. As b- 4ac < 0, there is no solution to the quadratic equation. So, the line does not meet the circle.

Answered by Anastasios I. Maths tutor

17542 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


How do you find the equation of a tangent to a curve at a particular point?


A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]


integrate x^2 + 3x + 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences