Find the location of the turning point of the following curve, y = x^2 + 6x - 7

Turning point is when dy/dx = 0

if y= x2 + 6x - 7

dy/dx = 2x + 6

at turning point: 2x + 6 = 0

therefore: 2x = - 6

x coordinate: x = - 3

substitute into y to find y coordinate: y = (-3)2 + 6(-3) -7

therefore: y = 9 -18 -7

y coordinate: y = -16

location of turning point: (-3,-16)  //

HM
Answered by Hugo M. Maths tutor

6355 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we differentiate y = arctan(x)?


Time, T, is measured in tenths of a second with respect to distance x, is given by T(x)= 5(36+(x^2))^(1/2)+4(20-x). Find the value of x which minimises the time taken, hence calculate the minimum time.


integrate x^2 + 3x + 4


Differentiate with respect to x, y = (x^3)*ln(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning