Find the location of the turning point of the following curve, y = x^2 + 6x - 7

Turning point is when dy/dx = 0

if y= x2 + 6x - 7

dy/dx = 2x + 6

at turning point: 2x + 6 = 0

therefore: 2x = - 6

x coordinate: x = - 3

substitute into y to find y coordinate: y = (-3)2 + 6(-3) -7

therefore: y = 9 -18 -7

y coordinate: y = -16

location of turning point: (-3,-16)  //

Answered by Hugo M. Maths tutor

5007 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) = 14*(x^2)*(e^(x^2))


For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0


Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.


Find the stationary point of the function f(x) = x^2 +2x + 5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences