Find the location of the turning point of the following curve, y = x^2 + 6x - 7

Turning point is when dy/dx = 0

if y= x2 + 6x - 7

dy/dx = 2x + 6

at turning point: 2x + 6 = 0

therefore: 2x = - 6

x coordinate: x = - 3

substitute into y to find y coordinate: y = (-3)2 + 6(-3) -7

therefore: y = 9 -18 -7

y coordinate: y = -16

location of turning point: (-3,-16)  //

Answered by Hugo M. Maths tutor

5373 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

factorise x^3 + 3x^2 - 13x - 15


Solve x^2 + x=12 by factorising


Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15


y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences