Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5

y=(4x^2+1)^5                        y=u^5          u=4x^2+1

                                             y’=5u^4   (wrt u)  u’=8x

y’=40x(4x^2+1)^4

y’=40x(4x^2+1)^4=0             x=0  (x^2+1>0)

                           

Answered by Ellie B. Maths tutor

3342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate y=2x^2 +4x-1


Why do we get cos(x) when we differentiate sin(x)?


Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


Expand and simplify (3 + 4*root5)(3 - 2*root5)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences