Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5

y=(4x^2+1)^5                        y=u^5          u=4x^2+1

                                             y’=5u^4   (wrt u)  u’=8x

y’=40x(4x^2+1)^4

y’=40x(4x^2+1)^4=0             x=0  (x^2+1>0)

                           

Answered by Ellie B. Maths tutor

3612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many ways are there to arrange n distinct objects in a CIRCLE?


Find the exact solutions for 4 − x^2 = |2x − 1|


Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case


Integral of Cosec(x)/Sec(x) (i.e. Use of trignometric identities)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences