Find the derivative with respect to x and the x-coordinate of the stationary point of: y=(4x^2+1)^5

y=(4x^2+1)^5                        y=u^5          u=4x^2+1

                                             y’=5u^4   (wrt u)  u’=8x

y’=40x(4x^2+1)^4

y’=40x(4x^2+1)^4=0             x=0  (x^2+1>0)

                           

Answered by Ellie B. Maths tutor

3614 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that z = sin(x)/cos(x), use the quoitent rule to show that dZ/dx = sec^2(x)


Using the factor theorem, factorise x^4 - 3x^3 - 3x^2 + 11x - 6


Sketch y = 9x – 4x^3, showing where the curve crosses the x axis.


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences