(x_(n+1), y_(n+1))=(x_n^2-y_n^2+a, 2x_ny_n +b+2). (i) Find (x1, y1) if (a, b)=(1,-1) and (x_n, y_n) is constant. (ii) Find (a, b) if (x1, y1)=(-1,1) and (x_n, y_n) has period 2.

(i) x_1=x_1^2-y_1^2+1, y_1=2x_1y_1+1 by the equations given and the equality of x_1, x_2, x_3. Substituting and trial and error of factor theorem results in x_1(x_1-1)(4x_1^2-4x_1+5)=0 . The quadratic has no real roots so the pairs of solutions are (x_1, y_1)=(0, 1), (1, -1). (ii) (x_2, y_2)=(a,b), (x_3,y_3)=(a^2-b^2+a, 2ab+b+2)=(x_1, y_1) by its periodic nature. Subbing a from the y equation into the x equation gets a quadratic in b^2, which has one +ve and one -ve solution. Since b is real, b>0, implying b^2=4/3. This results in the answers being (a, b)=(-1/2-rt3/4, 2/rt3), (-1/2+rt3/4, -2/rt3).

Answered by Tutor80806 D. STEP tutor

1393 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

How can I integrate e^x sin(x)?


Evaluate the integral \int \frac{x}{x tan(x) + 1} dx using integration by substitution, hence evaluate \int \frac{x}{x cot(x) - 1} dx.


Differentiate: f(x)=(ax^2 + bx + c) ln(x + (1+x^2)^(1/2)) + (dx + e) (1 + x^2)^(1/2). Hence integrate i) ln(x + (1 + x^2)^(1/2)), ii) (1 + x^2)^(1/2), iii) x ln(x + (1 + x^2)^(1/2)).


Show that i^i = e^(-pi/2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences