(IGCSE, Jan 2013, q8 adapted) The astronaut David Scott dropped a hammer and a feather from rest, at the same time and from the same height on the moon. The hammer and the feather landed at the same time. Why?

Central to this question is an understanding of the difference between an accelerating object and an object travelling at terminal velocity. Firstly, the experiment is carried out on the moon, which means we can assume there is no air resistance force, or drag, acting on the two objects. As weight is the only force acting on the objects, and it is a constant force, by Newton's second law of motion, F=ma, we know that the objects will experience a constant acceleration towards the centre of the moon. The forces acting on the hammer and the feather respectively are mhammer x gmoon and mfeather x gmoon. Using this information, we can construct particular versions of Newton's second law for each object: Hammer: mhammer x gmoon = mhammer x ahammer (1) Feather: mfeather x gmoon = mfeather x afeather    (2) We can see that in both (1) and (2), the masses cancel from both sides of the equation. This means that gmoon=ahammer=afeather. This leads us to the surprising conclusion that the masses of the hammer and the feather don’t matter in determining how quickly they accelerate towards the centre of the moon, and they will land at the same time. Given the time, I’d like to include a historical anecdote about Galileo’s similar (thought) experiment dropping a rock and a feather from the tower of Pisa, and the way he explained the fact that they would hit the ground in the same time without invoking Newton’s second law, which had not yet been formulated.

NK
Answered by Nadya K. Physics tutor

5472 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Why does lowering the control rods in a nuclear reactor reduce the amount of energy released each second from the nuclear fuel?


Describe how making a saucepan black and adding fins will help heat food up faster


Describe (both quanititavely and qualitiatively) the energy changes of a ball of mass 0.5kg, dropped from a height of 10m and left to bounce. Make use of the law of conservation of energy.


A 10kg cube of iron with length 5cm is resting on a table surface. Assuming the acceleration under gravity of the block is 9.81ms^(-2), what is the pressure on the table?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning