Integrating cos^2(x)+5sin^2(x)

Firstly, note that cos^2(x)+5sin^2(x)= cos^2(x) +sin^2(x) +4sin^2(x).

By trignoemtric identies, cos^2(x)+sin^2(x)=1 and so we can just integrate 1+4sin^2(x) since this is equal to cos^2(x)+5sin^2(x).

Again, by trignometric identities, 4sin^2(x)=4(1/2-1/2 cos(2x))=2-2cos(2x),

and so 1+4sin^2(x)=3-2cos(2x).

We can now integrate this much more easily...

3 integrates to 3x and -2cos(2x) integrates to -sin(2x).

Hence the integral, remembering the constant of integration, is...

3x -sin(2x) +c

Answered by Rafe L. Maths tutor

7791 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate y=2x(x-2)^5 to find dy/dx?


Find f''(x), Given that f(x)=5x^3 - 6x^(4/3) + 2x - 3


Find the integral of y= e^3x / 1+e^x using calculus.


Simplify fully: (5 +√7)/ (2+√7)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences