Given z=cosx+isinx, show cosx=1/2(z+1/z)

We first consider 1/z=(cosx+isinx)^(-1). Application of De Moivre's theorem for integer n: (cosx+isinx)^(n)=cosnx+isinnx yields the result 1/z=cosx-isinx. Addition of the two forms z and z^(-1) steers us to the result, albeit with this being double the result. 

CS
Answered by Chris S. Further Mathematics tutor

9098 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that 1+4+9+...+n^2 = n(n+1)(2n+1)/6.


Integrate ln(x) with respect to x.


Differentiate artanh(x) with respect to x


How do I draw any graph my looking at its equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning