Given z=cosx+isinx, show cosx=1/2(z+1/z)

We first consider 1/z=(cosx+isinx)^(-1). Application of De Moivre's theorem for integer n: (cosx+isinx)^(n)=cosnx+isinnx yields the result 1/z=cosx-isinx. Addition of the two forms z and z^(-1) steers us to the result, albeit with this being double the result. 

CS
Answered by Chris S. Further Mathematics tutor

8828 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Integrate ln(x) with respect to x.


Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.


Find all the cube roots of 1


Find the root of the complex 3+4i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning