Given z=cosx+isinx, show cosx=1/2(z+1/z)

We first consider 1/z=(cosx+isinx)^(-1). Application of De Moivre's theorem for integer n: (cosx+isinx)^(n)=cosnx+isinnx yields the result 1/z=cosx-isinx. Addition of the two forms z and z^(-1) steers us to the result, albeit with this being double the result. 

CS
Answered by Chris S. Further Mathematics tutor

8864 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


Find the cube roots of unity.


Write (1+2i) /(2-i) in form x+iy


Find the reflection of point P(2,4,-6) in the plane x-2y+z=6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning