Given z=cosx+isinx, show cosx=1/2(z+1/z)

We first consider 1/z=(cosx+isinx)^(-1). Application of De Moivre's theorem for integer n: (cosx+isinx)^(n)=cosnx+isinnx yields the result 1/z=cosx-isinx. Addition of the two forms z and z^(-1) steers us to the result, albeit with this being double the result. 

CS
Answered by Chris S. Further Mathematics tutor

8955 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.


Find the set of values of x for which (x+4) > 2/(x+3)


How can we solve a limit having an indetermination of the type 0/0 or infinity divided by infinity?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning