Express 2 cos x – sin x in the form Rcos( x + a ), where R and a are constants, R > 0 and a is between 0 and 90 ° Give the exact value of R and give the value of to 2 decimal places.

2cosx - sinx = Rcos(x+a) = Rcos(x)cos(a)-Rsin(x)sin(a)

Implying

2cos(x)=Rcos(x)cos(a)

Rcosa = 2

Similarly: Rsin(a) = 1

Therefore tan(a) = 1/2

Meaning a=26.57 Degrees

R2(sin2a+cos2a)=5

Implying, given sin2a+cos2a=1, R= Root(5)

Answer 2cosx-sinx=(Root5)(cos[x+26.57])

TO
Answered by Thomas O. Maths tutor

31210 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


Differentiate x^3(sinx) with respect to x


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


What are the roots of 3x^2 + 13x + 4 ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences