Given that y = 8x + 2x^-1, find the 2 values for x for which dy/dx = 0

First differentiate y with respect to x, which gives you dy/dx = 8 - 2x^-2. This needs to equal zero so equate to zero. 8-2x^-2 = 0. You can then bring the 2x^-2 to the other side giving 2x^-2=8. Dividing both sides by 2 gives x^-2 = 4. You can then flip both sides, giving x^2 = 1/4. Then square root both sides giving x = +/- 1/2. 

Answered by Rosemary B. Maths tutor

3054 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


A circle with centre C has equation x^2 + y^2 + 2x + 6y - 40 = 0 . Express this equation in the form (x - a)^2 + (x - b)^2 = r^2. Find the co-ordinates of C and the radius of the circle.


f ( x ) = 2 x ^3 − 5 x ^2 + ax + a. Given that (x + 2) is a factor of f ( x ), find the value of the constant a. (3 marker)


How do you differentiate y=ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences