solve the equation 4cos^2(x) -15sin(x) = 13

We first want to get every term in terms of the same variable, namely sin(x). to do so, we will use the identity sin^2(x) +cos^2(x) = 1 to get: 4(1-sin^2(x)) -15sin(x) -13 = 0. which we can then rewrite as: 4sin^2(x) +15sin(x)+9=0 and solve it as a quadratic equation in sin(x), giving us: (4sin(x)+3)(sinx+3)=0. Hence x = arcsin(-3/4) or arcsin(-3), Of which only x = arcsin(-3/4) is a valid solution.

Related Further Mathematics A Level answers

All answers ▸

You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


Prove that (AB)^-1 = B^-1 A^-1


Differentiate arctan(x) with respect to x


Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences