solve the equation 4cos^2(x) -15sin(x) = 13

We first want to get every term in terms of the same variable, namely sin(x). to do so, we will use the identity sin^2(x) +cos^2(x) = 1 to get: 4(1-sin^2(x)) -15sin(x) -13 = 0. which we can then rewrite as: 4sin^2(x) +15sin(x)+9=0 and solve it as a quadratic equation in sin(x), giving us: (4sin(x)+3)(sinx+3)=0. Hence x = arcsin(-3/4) or arcsin(-3), Of which only x = arcsin(-3/4) is a valid solution.

MG
Answered by Max G. Further Mathematics tutor

2654 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


Define tanh(t) in terms of exponentials


A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning