solve the equation 4cos^2(x) -15sin(x) = 13

We first want to get every term in terms of the same variable, namely sin(x). to do so, we will use the identity sin^2(x) +cos^2(x) = 1 to get: 4(1-sin^2(x)) -15sin(x) -13 = 0. which we can then rewrite as: 4sin^2(x) +15sin(x)+9=0 and solve it as a quadratic equation in sin(x), giving us: (4sin(x)+3)(sinx+3)=0. Hence x = arcsin(-3/4) or arcsin(-3), Of which only x = arcsin(-3/4) is a valid solution.

MG
Answered by Max G. Further Mathematics tutor

2638 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


What is the value of x from (x+2)^2=4


Prove De Moivre's by induction for the positive integers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning