Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.

Layout the problem in a more recognisable form such as (3 - sqrt(5))(3 - sqrt(5)). Notice that this looks a lot like a factorised quadratic equation, where sqrt(5) can be treated as a variable like x. Therefore, we can expand these brackets in the same way we expand these factorised quadratic equations. Following the same process should result in 9 - 6sqrt(5) + sqrt(5)2 which is equal to 14 - 6sqrt(5). Checking back with the question it where m and n are wanted, n = -6 as it is the coefficient of the term with sqrt(5) and m = 14 as it is the term that is a pure integer.

AP
Answered by Anselmo P. Maths tutor

8569 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.


Find d/dx (ln(2x^3+x+8))


Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


Differentiate y = lnx + 4x^2 + 3e^4x with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning