Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.

Layout the problem in a more recognisable form such as (3 - sqrt(5))(3 - sqrt(5)). Notice that this looks a lot like a factorised quadratic equation, where sqrt(5) can be treated as a variable like x. Therefore, we can expand these brackets in the same way we expand these factorised quadratic equations. Following the same process should result in 9 - 6sqrt(5) + sqrt(5)2 which is equal to 14 - 6sqrt(5). Checking back with the question it where m and n are wanted, n = -6 as it is the coefficient of the term with sqrt(5) and m = 14 as it is the term that is a pure integer.

Answered by Anselmo P. Maths tutor

7683 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the stationary points for the curve y = x^4 - 2*x^2 + 5.


Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)


How do I intregrate ln(x)?


find the integral for xe^10x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences