Express (3 - sqrt(5))^2 in the form m + n*sqrt(5), where m and n are integers.

Layout the problem in a more recognisable form such as (3 - sqrt(5))(3 - sqrt(5)). Notice that this looks a lot like a factorised quadratic equation, where sqrt(5) can be treated as a variable like x. Therefore, we can expand these brackets in the same way we expand these factorised quadratic equations. Following the same process should result in 9 - 6sqrt(5) + sqrt(5)2 which is equal to 14 - 6sqrt(5). Checking back with the question it where m and n are wanted, n = -6 as it is the coefficient of the term with sqrt(5) and m = 14 as it is the term that is a pure integer.

AP
Answered by Anselmo P. Maths tutor

8858 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.


Integrate 3x^2 + 4/3 x^5 with respect to x


Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning