Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))

Notice the denominator can be factorised as the difference of two squares. The fraction can then be simplified by cancellation. The resulting fraction(s) can then be solved using the list of integrals in your formulae and tables book. The final answer: ln|x+sqrt(x+1)| - ln|x+sqrt(x-1)| + C, |x|>1. (I hope to further explain the steps taken to solve this question using the whiteboard!)

Answered by Tutor80072 D. Maths tutor

3500 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the intensity of A-Level studies, what is the best way one can go about ensuring all tasks are completed in time?


What is integration by parts?


A curve has the equation 2x^2 + xy - y^2 +18 = 0. (1) Find the coordinates of the points where the tangent to the curve is parallel to the x-axis.


How do I know which is the null hypothesis, and which is the alternative hypothesis?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences