Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))

Notice the denominator can be factorised as the difference of two squares. The fraction can then be simplified by cancellation. The resulting fraction(s) can then be solved using the list of integrals in your formulae and tables book. The final answer: ln|x+sqrt(x+1)| - ln|x+sqrt(x-1)| + C, |x|>1. (I hope to further explain the steps taken to solve this question using the whiteboard!)

TD
Answered by Tutor80072 D. Maths tutor

4182 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.


How do I differentiate y=(4+9x)^5 with respect to x?


Integrate xsin(2x) by dx between the limits 0 and pi/2.


solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning