State and explain the trend in melting points of diamond, iodine and hydrogen fluoride.

Diamond is covalently bonded and has a giant covalent structure. Covalent bonds require lots of energy to break as they are strong so diamond has the highest melting point. Iodine has only weak intermolecular forces (instantaneous dipole-dipole interactions or London forces) whereas hydrogen fluoride has a permanent dipole and can hydrogen bond (as well as having London forces). Hydrogen bonding and permanent dipoles are stronger than Londer forces so more energy is needed to overcome them, therefore hydrogen fluoride has a higher melting point than iodine. Diamond has the highest melting point as bonds have to be broken whereas iodine and hydrogen fluoride are simple covalent molecules so they are held together by the intermolecular forces.

Answered by Ceri F. Chemistry tutor

17796 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe the shape of, and bonding in, a molecule of benzene and explain why benzene does not readily undergo addition reactions.


What factors influence the reaction rate?


Order the relative base strength of phenyl amine, methyl amine and methylphenyl amine and outline your reasoning.


Explain the trend in boiling points for the group 6 hydrides (O,S,Se,Te). Diagram would be included.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences