Rationalise the following: { 5 } / { 3 - sqrt(2) }

The aim here is to turn the fraction so that the denominator does not have a surd. 

Given that we know that any surd squared is equal to the number itself, i.e sqrt(2) * sqrt(2) equas 2, or sqrt(x) * sqrt(x) = x we want to use this rule to try to get rid of the { sqrt(2) } in the question above.

Given however that the denominator is { 3 - sqrt(2) }, the only way to get rid of the surd all together is to multiply both the denominator and the numerator by { 3 sqrt(2) }. What we did here is reverse the sign. The sign ensures that the surds cancel when we expand the bracket out.

Original fraction to be rationlised: { 5 } / { 3 - sqrt(2) }

Rationalising: { (5) ( 3 + sqrt(2) ) } / { (3 - sqrt(2) ) ( 3 + sqrt(2) ) }

When you multiply everything out you end up with:

{ 15 + 5*sqrt(2) } / { 7 }

Answered by Amin S. Maths tutor

4891 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A quarter circle has a radius of 8, calculate the area giving your answer in terms of pi


Find the possible values of x when x^2+8x+15=0


Two shops have deals for purchasing pens: "3 for £2" and "5 for £3" . Mr. Papadopoulos wants to buy 30 pens for his class in school, which deal should he use if he wants to spend the least amount of money possible, and how much will he spend?


(a) show that 3/10 + 2/15 = 13/30 (b) show that 2 5/8 ÷ 1 1/6 = 2 1/4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences