Differentiate y=(3x-1)/(2x-1)

First, recognise that the function is a fraction and recall the quotient rule.     y=u/v     dy/dx=(vu'-uv')/v2, where u' and v' is the derivative of u and v respectively. Then, apply the rule.     u=3x-1, v=2x-1     u'=3, v'=2     dy/dx=[3(2x-1)-2(3x-1)]/(2x-1)2 Finally, simplify the expression.     dy/dx=1/(2x-1)2

Answered by Martin M. Maths tutor

6837 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M= 300e^-0. 5t


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


Use the geometric series formula to find the 9th term in this progression : 12 18 27...


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences