Differentiate y=(3x-1)/(2x-1)

First, recognise that the function is a fraction and recall the quotient rule.     y=u/v     dy/dx=(vu'-uv')/v2, where u' and v' is the derivative of u and v respectively. Then, apply the rule.     u=3x-1, v=2x-1     u'=3, v'=2     dy/dx=[3(2x-1)-2(3x-1)]/(2x-1)2 Finally, simplify the expression.     dy/dx=1/(2x-1)2

Answered by Martin M. Maths tutor

6712 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate cos(2x)/(x) with respect to x


Solve ln(2x-3) = 1


The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.


Differentiate: y=12x(2x+1)+1/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences