Answers>Maths>IB>Article

Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.

We can easily identify the first term (5)

The common difference can be found by subtracting the nth term from the (n+1)th term

7-5=9-7=11-9=2

Therefore:

U1=5 and d=2

The IB formula booklet provides the general formula for the nth term and the sum to n terms. Substitute the previously found values into these formulae.

Un=U1 + (n-1)d

Sn=n/2(2u1+(n-1)d)

(i)

Un=U1 + (n-1)d

Substitute in values of u1 and d

Un=5+(n-1)2

Simplify the result by expanding brackets

Un=5+2n-2

Un=2n+3

(ii)

Sn=n/2(2u1+(n-1)d)

Substitute in values of u1 and d

Sn=n/2(2(5)+(n-1)2)

Sn=n/2(10+2n-2)

Sn=5n+n2-n

Sn=4n+n2

(iii)

Substitute n=20 into the formula from (ii)

Sn=4n+n2

Sn=4(20)+(20)2

Solve

Sn=80+400=480

JN
Answered by Jan Niklas F. Maths tutor

7278 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


Solve the equation sec^2 x + 2tanx = 0 , 0 ≤ x ≤ 2π, question from HL Maths exam May 2017 TZ1 P1


Given the parametric equations x = lnt+t and y = sint calculate d^2y/dx^2


Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning