What is the partial fraction expansion of (x+2)/((x+1)^2)?

First we write the fraction in terms of partial fractions with two unknown numerators, A and B, as follows: (x+2)/(x+1)2 = A/(x+1) + B/(x+1)2

Note that since the denominator of the original fraction is of index two, we need to have two different fractions in our partial fraction expanison. Now we multiply through by (x+1)2 to get rid of all of the fractions and turn the problem into a more well known problem, solving a quadratic equation. We get: x+2 = A(x+1) + B. This is now simple to solve. We compare 'x' terms on the left and right hand side: x=Ax. This tells us A=1. Substituting this in, we have the equation: x+2=x+1+B. We can subtract x+1 from both sides and we get: 1=B. Therefore, our partial fraction expansion is:

(x+2)/(x+1)2 = 1/(x+1) + 1/(x+1)2

Answered by Kim R. Maths tutor

4040 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


Solve ln(2x-3) = 1


The curve C has equation y=2x^2 -11x +13. (a) The point P has coordinates (2, – 1) and lies on C. Find the equation of the tangent to C at P.


a) Differentiate and b) integrate f(x)=xcos(2x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences