What is the partial fraction expansion of (x+2)/((x+1)^2)?

First we write the fraction in terms of partial fractions with two unknown numerators, A and B, as follows: (x+2)/(x+1)2 = A/(x+1) + B/(x+1)2

Note that since the denominator of the original fraction is of index two, we need to have two different fractions in our partial fraction expanison. Now we multiply through by (x+1)2 to get rid of all of the fractions and turn the problem into a more well known problem, solving a quadratic equation. We get: x+2 = A(x+1) + B. This is now simple to solve. We compare 'x' terms on the left and right hand side: x=Ax. This tells us A=1. Substituting this in, we have the equation: x+2=x+1+B. We can subtract x+1 from both sides and we get: 1=B. Therefore, our partial fraction expansion is:

(x+2)/(x+1)2 = 1/(x+1) + 1/(x+1)2

Answered by Kim R. Maths tutor

3649 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = e^(sin2x) , 0 ≤ x ≤ pi (a). Use calculus to find the coordinates of the turning points on the graph of y = f(x)


How would I differentiate y=2(e^x)sin(5x) ?


Find the equation of the straight line perpendicular to 3x+5y+6=0 that passes through (3,4)


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences