What is the partial fraction expansion of (x+2)/((x+1)^2)?

First we write the fraction in terms of partial fractions with two unknown numerators, A and B, as follows: (x+2)/(x+1)2 = A/(x+1) + B/(x+1)2

Note that since the denominator of the original fraction is of index two, we need to have two different fractions in our partial fraction expanison. Now we multiply through by (x+1)2 to get rid of all of the fractions and turn the problem into a more well known problem, solving a quadratic equation. We get: x+2 = A(x+1) + B. This is now simple to solve. We compare 'x' terms on the left and right hand side: x=Ax. This tells us A=1. Substituting this in, we have the equation: x+2=x+1+B. We can subtract x+1 from both sides and we get: 1=B. Therefore, our partial fraction expansion is:

(x+2)/(x+1)2 = 1/(x+1) + 1/(x+1)2

KR
Answered by Kim R. Maths tutor

4194 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


Where does the geometric series formula come from?


A curve is defined by the parametric equations: X = 3 – 4t , y = 1 + (2/t) Find (dy/dx) in terms of t.


What is [(x+1)/(3x^(2)-3)] - [1/(3x+1)] in its simplest form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences