ABC and DEF are similar isoceles triangles. AB=BC=5cm, AC=6cm, DF=12cm. What is the area of DEF?

We first split ABC into two right-angled triangles. We name the midpoint of AC, M. AM=1cm, and BM=sqrt(52-32)=4 by Pythagoras. The area of ABC =1/2ACBM=1/264=12. We can see that the side lengths of DEF are greater than the side lengths of ABC by a factor of two. The area is therefore greater than ABC by a factor of 22=4. So the area of DEF=4*12=48

PG
Answered by Peter G. Maths tutor

3608 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A class has 30 students. The mean height of the 14 boys is 1.52m. The mean height of all the students is 1.48m. Work out the mean height of the girls.


Prove that the square of an odd number is always 1 more than a multiple of 4.


Expand and simplify (x − 4)(2x + 3y)^2


Dominik hires a satellite phone. His total hire charge is £860. For how many weeks did he hire the phone? (Total hire charge = No. of week X 90 +50)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning