ABC and DEF are similar isoceles triangles. AB=BC=5cm, AC=6cm, DF=12cm. What is the area of DEF?

We first split ABC into two right-angled triangles. We name the midpoint of AC, M. AM=1cm, and BM=sqrt(52-32)=4 by Pythagoras. The area of ABC =1/2ACBM=1/264=12. We can see that the side lengths of DEF are greater than the side lengths of ABC by a factor of two. The area is therefore greater than ABC by a factor of 22=4. So the area of DEF=4*12=48

Answered by Peter G. Maths tutor

2751 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I expand double brackets?


How can I remember the values of sin60, sin30 sin45 e.t.c in my exams?


Solve the simultaneous equations: x^2-y=16 and 2y-4=14x


A group of 55 pupils were asked if they owned a phone or a tablet.11 people are known to own both18 said they only owned a tablet34 said they owned at least a phoneA student is picked a random, what is the probability that the student doesn’t have a phone


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences