Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)

First of all differentiate the equation of the curve implicitly, giving:

3x2-8y(dy/dx)=12y+12x(dy/dx)

=> (dy/dx)(12x+8y)=3x2-12y

=> dy/dx=(3x2-12y)/(12x+8y)

As dy/dx is the gradient of the curve, if we insert x=-8 and y=8, we will have the gradient of the curve specific to the P location:

dy/dx=[3(-8)2-12(8)]/[12(-8)+8(8)]=-3

Answered by Franco Guglielmo R. Maths tutor

3624 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If I throw a ball, of mass 2kg, straight up in the air, with velocity 10ms-1, how long until it lands? Assume gravity = 10ms-2


How do you find the gradient of a parametric equation at a certain point?


How do you differentiate y=x^x?


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences