Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)

First of all differentiate the equation of the curve implicitly, giving:

3x2-8y(dy/dx)=12y+12x(dy/dx)

=> (dy/dx)(12x+8y)=3x2-12y

=> dy/dx=(3x2-12y)/(12x+8y)

As dy/dx is the gradient of the curve, if we insert x=-8 and y=8, we will have the gradient of the curve specific to the P location:

dy/dx=[3(-8)2-12(8)]/[12(-8)+8(8)]=-3

Answered by Franco Guglielmo R. Maths tutor

3760 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I break down (x-2)/((x+1)(x-1)^2) into partial fractions?


What is the value of the integral of e^x from x = 1 to x = 2?


How do I find the limit of a sequence that is expressed as a fraction?


Solve the differential equation: dy/dx = tan^3(x)sec^2(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences