Find the gradient of the curve (x^3)-4(y^2)=12xy at the point P(-8,8)

First of all differentiate the equation of the curve implicitly, giving:

3x2-8y(dy/dx)=12y+12x(dy/dx)

=> (dy/dx)(12x+8y)=3x2-12y

=> dy/dx=(3x2-12y)/(12x+8y)

As dy/dx is the gradient of the curve, if we insert x=-8 and y=8, we will have the gradient of the curve specific to the P location:

dy/dx=[3(-8)2-12(8)]/[12(-8)+8(8)]=-3

FG
Answered by Franco Guglielmo R. Maths tutor

3945 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Which equation of motion should I use?


A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences