Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)

We want to rearrange the expression to the form (1+y)^n so we can use the general result: (1+y)^n=1+ny+[n(n-1)/2]y^2+[n(n-1)(n-2)/3!]y^3+... 1/(2+5x)^3 = (2+5x)^-3 = [2(1+5x/2)]^-3 = (2^-3)(1+5x/2)^-3 using the result ... = (1/8)(1+(-3)(5x/2)+(-3)(-4)/2^2+(-3)(-4)(-5)/3!^3+... = (1/8)(1-15x/2+(75/2)x^2-(625/4)x^3)= 1/8-(15/16)x+(75/16)x^2-(625/32)x^3 

Answered by Saskia J. Maths tutor

11723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


Express the following in partial fractions: (x^2+4x+10)/(x+3)(x+4)(x+5)


Solve x^2 - 6x - 2=0 giving your answer in simplified surd form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences