Use the binomial series to find the expansion of 1/(2+5x)^3 in ascending powers of x up to x^3 (|x|<2/5)

We want to rearrange the expression to the form (1+y)^n so we can use the general result: (1+y)^n=1+ny+[n(n-1)/2]y^2+[n(n-1)(n-2)/3!]y^3+... 1/(2+5x)^3 = (2+5x)^-3 = [2(1+5x/2)]^-3 = (2^-3)(1+5x/2)^-3 using the result ... = (1/8)(1+(-3)(5x/2)+(-3)(-4)/2^2+(-3)(-4)(-5)/3!^3+... = (1/8)(1-15x/2+(75/2)x^2-(625/4)x^3)= 1/8-(15/16)x+(75/16)x^2-(625/32)x^3 

SJ
Answered by Saskia J. Maths tutor

13867 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


Simplify (3x^2-x-2)/(x^2-1)


Integrate f(x): f(x) = (3x +2) / (x^2 - 5x +6)


Find the inverse of the function g(x)=(4+3x)/(5-x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning