Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta

We have 2tan(th) / (1 + tan^2(th)) = sin(2th)

We know that tan(A) = sin(A) / cos(A), and 1 + tan^2(A) = sec^2(A)

Therefore => (2sin(th) / cos(th)) / sec^2(th)

=> 2sin(th)*cos^2(th) / cos(th)

=> 2sin(th) cos(th)

=> sin(2th) by definition of trigonometric identities 

IC
Answered by Ian C. Maths tutor

3487 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate (e^(2x)+1)^3?


How do I differentiate a pair of parametric equations?


Derive the following with respect to x1: y=(x1*x2)/(x1+x2).


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences