Show that 2tan(th) / (1+tan^2(th)) = sin(2th), where th = theta

We have 2tan(th) / (1 + tan^2(th)) = sin(2th)

We know that tan(A) = sin(A) / cos(A), and 1 + tan^2(A) = sec^2(A)

Therefore => (2sin(th) / cos(th)) / sec^2(th)

=> 2sin(th)*cos^2(th) / cos(th)

=> 2sin(th) cos(th)

=> sin(2th) by definition of trigonometric identities 

Answered by Ian C. Maths tutor

3330 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where does the circle (x-6)^2+(y-7)^2=4 intersect with y=x+3


Can you explain what a logarithm is?


Expand using binomial expansion (1+6x)^3


Integrate, by parts, y=xln(x),


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences