Find dy/dx such that y=(e^x)(3x+1)^2.

We will solve this question with the knowledge that dy/dx = u.(dv/dx) + v.(du/dx), where y=u.v We have y=e^x(3x+1)^2. First, we want to find u & v. By splitting the function, we have that u=e^x and v=(3x+1)^2. Then, we want to find du/dx and dv/dx. In other words, differentiate u & v wrt x. Since e^x differentiated wrt x is just e^x, du/dx=e^x. To differentiate (3x+1)^2, we must differentiate the function inside and outside of the brackets. So, we have 2(3x+1) multiplied by 3. This gives us 6(3x+1). Hence dv/dx=6(3x+1). Using our original equation for the derivative, dy/dx = e^x.(6(3x+1)) + (3x+1)^2.(e^x) Therefore, dy/dx = 6e^x(3x+1) +e^x(3x+1)^2. Finally, we must not forget to add a constant to our answer. Hence, our final answer is dy/dx = 6e^x(3x+1) +e^x(3x+1)^2 + c.

SB
Answered by Stefanie B. Maths tutor

4589 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


A particle A rests on a smooth inclined plane, it is connected to a particle B by a light inextensible string that is passed over a fixed smooth pulley at the top of the plane. B hangs freely. Find the acceleration of the system and tension in the string.


Differentiate with respect to x: (6x + 7)e^x


FInd the equation of the line tangent to the graph g(x)=integral form 1 to x of cos(x*pi/3)/t at the point x=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning