In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)

Note that you can not take a positive base log of a negative number.  log5(x2-5) - log5(x) = 2log5(2) => log5((x2-5)/x) = log5(4) => (x2-5)/x = 4 => x2- 4x - 5 = 0 => x = -1 or 5 Go back and check original equation. x cannot be -1 since you cannot take the (positive base) log of a negative number, so x has to be 5.

Answered by Milan L. Maths tutor

2782 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate (3x^2-5x)/(4x^3+2x^2)


Integrate 2x/(x^2+3) using the substitution u=x^2+3


The mass, m grams, of a substance is increasing exponentially so that the mass at time t hours is m=250e^(0.021t). Find the time taken for the mass to double in value.


integrate 5x^2 + x + 2 and find the value of c if the curve lies on the coordinates (1,3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences