In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)

Note that you can not take a positive base log of a negative number.  log5(x2-5) - log5(x) = 2log5(2) => log5((x2-5)/x) = log5(4) => (x2-5)/x = 4 => x2- 4x - 5 = 0 => x = -1 or 5 Go back and check original equation. x cannot be -1 since you cannot take the (positive base) log of a negative number, so x has to be 5.

ML
Answered by Milan L. Maths tutor

3667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


y = 3x^2 + 2x^(1/2) - 12 Find dy/dx


Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning