Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)

Let P(n) be the statement “(n^3)-n is divisible by 3”

First we’ll examine the base case: P(1)

(n^3)-n=1^3-1=1-1=0

0=3*0, so is divisible by 3, and so P(1) is true

Now assume for some k>0, an integer, that P(k) holds true, i.e. there exists an integer a such that (k^3)-k = 3a.

We want to show that this implies that P(k+1) is true:

(k+1)^3-(k+1)

=k^3+3k^2+3k+1-k-1      (This is just a binomial expansion)

=k^3-k +3k^2+3k            (The 1’s cancel. Since we want to use our assumption we put k^3-k together)

=3a+3k^2+3k                 (Using the inductive hypothesis)

=3b                                 (b is clearly an integer so we’re done)

Now since we’ve shown that P(n) holds for n=1 and that P(k) implies P(k+1), then by mathematical induction it follows that P(n) is true for all integers n>0. q.e.d.

TN
Answered by Tom N. Further Mathematics tutor

6897 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


Write sin(4x) in terms of sin and cos.


The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


Prove that (AB)^-1 = B^-1 A^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning