Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.

Let eqn. 1 be: 3x + 2y - 1 = 0  & Let eqn. 2 be: 4x - 6y -10 = 0

Multiply eqn. 1 by a factor of 3, and add the two eqautions together. (This eliminates y from the equation)

This gives: 9x + 6y - 3 = 0

+                4x - 6y - 10 =0

This gives the equation: 13x - 13 = 0, so 13x = 13, and therefore x =1

Substitute this value of x into either eqn. 1 or eqn. 2. (I will use eqn. 1 for this example)  3(1) + 2y - 1 = 0. This can be rearranged to give 2y = -2, and hence y = -1.

Therefore, point P is at (1, -1).

Answered by Kris S. Maths tutor

3244 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can I take a derivative at x=0 for the function f(x) = |x| ?


A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


How do we use the Chain-rule when differentiating?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences