Line AB, with equation: 3x + 2y - 1 = 0, intersects line CD, with equation 4x - 6y -10 = 0. Find the point, P, where the two lines intersect.

Let eqn. 1 be: 3x + 2y - 1 = 0  & Let eqn. 2 be: 4x - 6y -10 = 0

Multiply eqn. 1 by a factor of 3, and add the two eqautions together. (This eliminates y from the equation)

This gives: 9x + 6y - 3 = 0

+                4x - 6y - 10 =0

This gives the equation: 13x - 13 = 0, so 13x = 13, and therefore x =1

Substitute this value of x into either eqn. 1 or eqn. 2. (I will use eqn. 1 for this example)  3(1) + 2y - 1 = 0. This can be rearranged to give 2y = -2, and hence y = -1.

Therefore, point P is at (1, -1).

Answered by Kris S. Maths tutor

3322 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

express x^2-4x+9 in the form (x-q)^2+y


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


A 10 kilogram block slides down a 30 degree inclined slope, the slope has a coefficient of friction of 0.2. Calculcate the blocks acceleration down the slope.


Find an equation for the straight line connecting point A (7,4) and point B(2,0)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences