How do you differentiate a function?

The differential of a function is defined by the expression: dy/dx = Lim(dx->0) of (f(x+dx)-f(x))/dx. For functions only involving powers of x, the differentioal can easily be calculated by timesing by the power, and then reducing the power by 1. For example: y = f(x) = 3x2 The differential, dy/dx, is: dy/dx = 6x, where here the coefficient, 3, is multoplied by the power, 2 to give 6, and the power is reduced by 1 to give a power of 1.

MH
Answered by Max H. Maths tutor

3558 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation x^2 +2xy–3y^2 +16=0. Find the coordinates of the points on the curve where dy/dx = 0.


Integrate the function f(x)=3^x+2 with respect to x


Express (2x-14)/(x^2+2x-15) as partial fractions


The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning