How do you differentiate a function?

The differential of a function is defined by the expression: dy/dx = Lim(dx->0) of (f(x+dx)-f(x))/dx. For functions only involving powers of x, the differentioal can easily be calculated by timesing by the power, and then reducing the power by 1. For example: y = f(x) = 3x2 The differential, dy/dx, is: dy/dx = 6x, where here the coefficient, 3, is multoplied by the power, 2 to give 6, and the power is reduced by 1 to give a power of 1.

MH
Answered by Max H. Maths tutor

3342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that (x-2) is a factor of 3x^3 -8x^2 +3x+2


Integrate ln(x).


How do I express complicated logs as single logarithms?


What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning