Why do the atomic radii of the elements decrease across Period 3 from sodium to chlorine?

The atomic radius of an atom is the distance from the atom's nucleus to its outermost electron. Moving across Period 3, the number of protons in the nucleus increases - for example sodium has 11 protons, and chlorine has 17 protons. Nuclear charge increases across the period, therefore the attraction between the positively charged nucleus and negatively charged electrons increases, so the atomic radii decreases. The number of electrons also increases across a period, but as each extra electron enters the same principal energy level, there is relatively little extra shielding.

AT
Answered by Amy T. Chemistry tutor

31759 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Explain how CH3CH2CHO can react with a Grignard reagent to produce CH3CH2CH(OH)CH2CH3. State the reagents and give the mechanism.


State and explain how the attraction between nuclei and outermost electrons varies across group 3 (2 marks)


Predict the effect of an increase in pressure and temperature on the production of ammonia in the reaction: N2(g) + 3H2(g) <-> 2NH3 (g) , where the change in enthalpy is -92.4 kJ


State and explain whether NaCl and Mg can conduct electricity in both the solid and molten states.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning