Why do the atomic radii of the elements decrease across Period 3 from sodium to chlorine?

The atomic radius of an atom is the distance from the atom's nucleus to its outermost electron. Moving across Period 3, the number of protons in the nucleus increases - for example sodium has 11 protons, and chlorine has 17 protons. Nuclear charge increases across the period, therefore the attraction between the positively charged nucleus and negatively charged electrons increases, so the atomic radii decreases. The number of electrons also increases across a period, but as each extra electron enters the same principal energy level, there is relatively little extra shielding.

AT
Answered by Amy T. Chemistry tutor

28119 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Palladium acts as a heterogeneous catalyst in the reaction between an alkene with hydrogen by providing an alternative reaction route. Describe the stages of this reaction route. (3 marks)


Why does propanol have a higher boiling point than propanone, propanal or methyl ethanoate?


A solution of ethanoic acid is made by dissolving 3g of pure liquid propanoic acid in 500cm^3 water. Given the pH of the solution is 2.98, calculate Ka.


Describe the key properties that rely upon metallic bonding and explain this.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences