Why do the atomic radii of the elements decrease across Period 3 from sodium to chlorine?

The atomic radius of an atom is the distance from the atom's nucleus to its outermost electron. Moving across Period 3, the number of protons in the nucleus increases - for example sodium has 11 protons, and chlorine has 17 protons. Nuclear charge increases across the period, therefore the attraction between the positively charged nucleus and negatively charged electrons increases, so the atomic radii decreases. The number of electrons also increases across a period, but as each extra electron enters the same principal energy level, there is relatively little extra shielding.

Answered by Amy T. Chemistry tutor

24029 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

You have 3.51g of hydrated zinc sulphate. You heat up the zinc sulphate until all the water has evaporated from it. The weight after heating is 1.97g. Find how many H2O molecules per zinc sulphate molecule there are in the hydrated form of it.


describe the structure of graphite


Why is the Harber process performed at higher temperatures rather than low?


The standard enthalpy of formation of glucose is -1273.3kJ/mol, and for carbon dioxide it is -393.5kJ/mol, and for water -285.8 kJ/mol. What is the standard enthalpy of combustion of glucose, C6H12O6?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences