Answers>Maths>IB>Article

Prove that (sinx)^2 + (cosx)^2 = 1

We start with the definitions of sine and cosine, which are, respectively: sinx = opposite/hypoteneuse and cosx = adjacent/hypoteneuse. We then square the analyzed expressions to get the following: 

(opposite ^2)/(hypoteneuse ^2) + (adjacent ^2)/(hypoteneuse ^2)

And since the denominators are the same, we can add the fractions to get: 

(opposite ^2) + (adjacent ^2) / (hypoteneuse ^2)

But recall the Pythagorean Theorem, according to which: (opposite ^2) + (adjacent ^2) = (hypoteneuse ^2). So we get:

[(hypoteneuse ^2)] / (hypoteneuse ^2) = 1. QED.

EA
Answered by Eno A. Maths tutor

13825 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How do I solve the equation "2cos(x) = sin(2x), for 0 ≤ x ≤ 3π"?


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.


How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning