Answers>Maths>IB>Article

Prove that (sinx)^2 + (cosx)^2 = 1

We start with the definitions of sine and cosine, which are, respectively: sinx = opposite/hypoteneuse and cosx = adjacent/hypoteneuse. We then square the analyzed expressions to get the following: 

(opposite ^2)/(hypoteneuse ^2) + (adjacent ^2)/(hypoteneuse ^2)

And since the denominators are the same, we can add the fractions to get: 

(opposite ^2) + (adjacent ^2) / (hypoteneuse ^2)

But recall the Pythagorean Theorem, according to which: (opposite ^2) + (adjacent ^2) = (hypoteneuse ^2). So we get:

[(hypoteneuse ^2)] / (hypoteneuse ^2) = 1. QED.

Answered by Eno A. Maths tutor

11527 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A geometric sequence has all its terms positive. The first term is 7 and the third term is 28.


If f(x)=(x^3−2x)^5 , find f'(x).


When do you use 'n choose k' and where does the formula come from?


What is the meaning of vector cross product?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences