Answers>Maths>IB>Article

Prove that (sinx)^2 + (cosx)^2 = 1

We start with the definitions of sine and cosine, which are, respectively: sinx = opposite/hypoteneuse and cosx = adjacent/hypoteneuse. We then square the analyzed expressions to get the following: 

(opposite ^2)/(hypoteneuse ^2) + (adjacent ^2)/(hypoteneuse ^2)

And since the denominators are the same, we can add the fractions to get: 

(opposite ^2) + (adjacent ^2) / (hypoteneuse ^2)

But recall the Pythagorean Theorem, according to which: (opposite ^2) + (adjacent ^2) = (hypoteneuse ^2). So we get:

[(hypoteneuse ^2)] / (hypoteneuse ^2) = 1. QED.

Answered by Eno A. Maths tutor

12134 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A team of four is chosen from six married couples. If a husband and wife cannot both be on the team, in how many ways can the team be formed?


Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256


Differentiate y = e^(x^2 - 3x).


Talk about the relation between differentiability and continuity on a real function and its derivative.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences